ART OF MEDICINE 2017

 

SEX HORMONES PARTICI-PATION IN THE PATHOGE-NETIC MECHANISMS OF ALZHEIMER'S DISEASE

 

I.R. Timofiychuk, T.P. Savchuk, S.B. Semenenko, K.V.Slobodian.

          Bukovinian State Medical University, Cher-nivtsi, Ukraine, Researcher ID I-1185-2016, ORCID ID: 0000-0003-2617-9697 Researcher ID I-1214-2016 ORCID ID: 0000-0002-1782-1812 Researcher ID I-1201-2016 ORCID ID: 0000-0002-6124-1938 Researcher ID I-1501-2016 ORCID ID: 0000-0001-5601-2244 e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

  

Abstract

Abstract. In scientific works of recent years increasing attention is paid to the influence of sex hormones on behavioral reactions, and mental activity. There is a lot of evidence that sex hormones are actively involved in the processes of neurogenesis, synaptogenesis, affecting the energy balance of neurons by regulating the functions of mitochondria. The higher incidence of Alzheimer's (AD) in women during menopause causes scientists to think about the influence of sex hormones on the development of neurodegenerative diseases.

In this literature review, we set the goal to analyze the influence of sex hormones on the function and morphology of different brain sections, and especially those structures undergoing neurodegenerative changes during the development of AD.

Main part. Alzheimer's Disease is the cause of significant cytoarchitectonic changes in brain structures that are responsible for cognitive function. Different structures vary in different ways in the process of aging and AD, which allows for predicting various pathogenetic mechanisms. AD primarily affects the nerve cells of the temporal lobe of the cerebral cortex and the hypocampus, which are responsible for the transmission of information and consolidation of memory. Damage to frontal lobes are responsible for making decisions, movement, language; parietal lobe that controls language, tactile sensations, spatial and temporal sensations, and tonsils responsible for emotional control. At AD in all of these structures, amyloid plaques and neurofibrillary tangles accumulate. One of the mechanisms of neuroprotective action of estrogens is the reduction of amyloid accumulation. Neurogenesis in the adult brain is active in the nucleus of the hypocampus and subventricular zone. It is significantly reduced after ovariectomy and is restored after the introduction of estradiol. It was believed that steroid hormones are synthesized only in the ovaries and affect the processes of transcription, but it turned out that these hormones are synthesized and in neural chains where they quickly, in minutes, modulate behavioral reactions and regulate spatial memory. The age-related decrease in the concentration of sex hormones is the cause of various neuroendocrine changes, and is manifested by a decrease in brain volumes, a decrease in the size of the neurons, the number of dendrites, an increase in apoptosis, neurodegenerative processes, manifested by a change in behavioral responses. The main mechanism of action of sex hormones is to bind to free highly specific and accessible intracellular receptors of these hormones and to influence the processes of transcription.

Conclusions. An overview of literary sources, which took the decade has shown that in recent years medical science has proven that endogenous estrogens and their receptors play an important role not only in the reproductive system. Estrogens act as powerful neuroprotectors, and scientists, and their clinicians consider estrogens as possible medications for neurodegenerative diseases and acute brain damage (stroke, trauma) not only in women, but also in men. The literature review highlighted new data on the influence of estrogens on cerebral blood flow, hormonal effects on mitochondrial function and energy supply. Many questions require a further study, but it is understandable that when choosing strategies and tactics for the treatment of neurological patients, it is necessary to take into account the effects of neurosteroids on CNS structures.

 

Keywords. Alzheimer's disease, estrogen, progesterone, aromatase, estrogen receptors.

 

Full text: PDF (Rus)

References
  1. Akshulakov S.К. Patomorfolohia, klinicheskie proiavlenia i sovremennoe lechenie / S.К. Akshulakov, Zh.Т. Tkanev, S.D. Karibay // Neyrokhirurhia i nevrolohia Kazakhstana. – 2015. – Т. 39. №2. – С. 26-33.
  2. Babichev V.N. Fiziolohicheskiy smysl mnozhestvennosti retseptorov polovykh hormonov / V.N. Babichev // Biomeditsinskaia khimia. – 2006. – Т. 51. – №6. – С. 603-616.
  3. Hrihorenko А.P., Rohaev Е.I. Molekuliarnye osnovy bolezni Altsheymera / А.P. Hrihorenko, Е.I. Rohaev // Molekuliarnaia biolohia. – 2007. – Т. 41. – № 2. – С. 331–345.
  4. Ilovayskaia I.А. Vliianie estrohenov na funktsionalnoe sostoianie tsentralnoy nervnoy sistemy / I.А. Ilovayskaia, D.S. Mikhaylova // Vestnik reproduktivnoho zdorovia. – 2008. – № 12. – С. 25-28.
  5. Ishunina Т. А. Korkovye i podkorkovye struktury mozha cheloveka pri starenii – i bolezni Altsheymera / Т. А. Ishunina // Morfolohicheskie vedomosti. – 2011. – №4. – С. 83-97.
  6. Ishunina Т. А. Estrohenovye retseptory α i β v hipotalamuse i perednebazalnom mozhe cheloveka pri bolezni Altsheymera / Т. А. Ishunina // Neyrokhimia. – 2010. – Т. 27. – №1. – С. 14–19.
  7. Ishunina Т. А. Estrohenovy retseptor α i varianty eho splaysinha v holovnom mozhe cheloveka. / Т. А. Ishunina. Biolohicheskie membrany // 2012: – Т. 29. – №4. – С. 253–258.
  8. Kareva Е.N. Estroheny i holovnoy mozh / Е.N. Kareva, О.М. Oleynikova, V.О. Panov, N.L. Shymanovskiy, V.I. Skvortsova // Vestnik RAMN. – 2012. №2. – С. 48-60.
  9. Tapilskaia N.I. Endokrinolohia kohnitivnykh rastroystv: vozmozhnosti menopauzalnoy hormonalnoy terapii / N.I. Tapilskaia, R.I. Hlushakov // Sovremennaia hinekolohia. – 2017. Т. 10. –№2. – С. 30-34.
  10. Fedotova Iu.О. Effekty estrohenov v TsNS / Iu.О. Fedotova, N.S. Sapronoova // Uspekhi fiziolohicheskikh nauk. – 2007. – Т. 38. – № 2. – С. 46–62.
  11. Khodyrev H.N. Vliianie estrohenov i prohesterona na funktsionalnoe sostoianie neyronov holovnoho mozha / H.N. Khodyrev, V.I. // Tsyrkin Vestnik Nizhehorodskoho Universiteta iм. М.I. Lobachevskoho. – 2012. – Т. 3. – №2. – С. 295-299.
  12. Ashok Kumar, Linda A. Bean, Asha Rani, Travis Jackson, Thomas C. Foster. Contribution of estrogen receptor subtypes, ERα, ERβ, and GPER1 in rapid estradiol-mediated enhancement of hippocampal synaptic transmission in mice. Hippocampus. 2015 Dec; 25(12): 1556–1566. doi:10.1002/hipo.22475
  13. Bailin H., Heather M., Barnes, Trimmer E., Andrew M., Benard OO. 2018 Stable Density and Dynamics of Dendritic Spines of Cortical Neurons Across the Estrous Cycle While Expressing Differential Levels of Sensory-Evoked Plasticity. Front Mol Neurosci. 2018; 11: 83. doi:10.3389/fnmol.2018.00083 9.
  14. Benjamin A. Pawlisch Luke Remage-Healey. Neuroestrogen signaling in the songbird auditory cortex propagates into a sensorimotor network via an `interface' nucleus. Neuroscience. 2015 Jan 22; 0: 522–535. doi:10.1016/j.neuroscience.2014. 10.023
  15. Bian C, Huang Y, Zhu H, Zhao Y, Zhao J, Zhang J. Steroid Receptor Coactivator-1 Knockdown Decreases Synaptic Plasticity and Impairs Spatial Memory in the Hippocampus of Mice. Neuroscience. 2018 May 1;377:114-125. doi: 10.1016/j.neuroscience.2018.02.034.
  16. Daniel Muñoz-Mayorga, Christian Guerra-Araiza, Luz Torner, Teresa Morales. Tau Phosphorylation in Female Neurodegeneration: Role of Estrogens, Progesterone, and Prolactin. Front Endocrinol (Lausanne). 2018; 9: 133. doi: 10.3389/fendo.2018.00133
  17. Fortress AM, Fan L, Orr PT, Zhao Z, Frick KM. Estradiol-induced object recognition memory consolidation is dependent on activation of mTOR signaling in the dorsal hippocampus. Learn Mem. 2013 Feb 19; 20(3):147-55. doi: 10.1101/lm.026732.112.
  18. Jaekyoon Kim, Julia S. Szinte, Marissa I. Boulware, Karyn M. Frick. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms J Neurosci. 2016;36(11): 3309–3321. doi:10.1523/ JNEUROSCI.0257-15.2016
  19. Jeong JK, Burrows K, Tremere LA, Pinaud R. Eur J Neurosci. Neurochemical organization and experience-dependent activation of estrogen-associated circuits in the songbird auditory forebrain. 2011 Jul; 34(2):283-91. doi: 10.1111/j.1460-9568.2011.07743.
  20. Lai YJ, Liu L, Hu XT, He L, Chen GJ. Estrogen Modulates ubc9 Expression and Synaptic Redistribution in the Brain of APP/PS1 Mice and Cortical Neurons. J Mol Neurosci. 2017 Mar;61[3]:436-448. doi: 10.1007/s12031-017-0884-2.
  21. Pereira LM, Guimarães IM, Oliveira VEM, Bastos CP, Ribeiro FM, Prado VF. Estradiol effect on short-term object memory under hypocholinergic condition., Brain Res Bull. 2018 Feb 12; 148:323-33. doi: 10.1016/j.brainresbull.2018. 01.012.
  22. Raquel M., Diaz M. Estrogen Interactions With Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause. Front Neurosci. 2018; 12: 128. doi:10.3389/ fnins.2018.00128
  23. Tuscher JJ, Fortress AM, Kim J, Frick KM. Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav Brain Res. 2015 May 15;285:140-57. doi: 10.1016/j.bbr.2014.08.001.
  24. Tuscher JJ, Szinte JS, Starrett JR, Krentzel AA, Fortress AM, Remage-Healey L, Frick KM. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice. Horm Behav. 2016 Jul;83:60-67. doi: 10.1016/j.yhbeh. 2016.05.001.
  25. Wu YWC, Du X.,1 M van den Buuse, Hill RA. Analyzing the influence of BDNF heterozygosity on spatial memory response to 17β-estradiol Transl Psychiatry. 2015 Jan; 5[1]: 498. doi:10.1038/tp.2014.143
  26. Yasushi Hojo, Shimpei Higo, Suguru Kawato, Yusuke Hatanaka, Yuuki Ooishi, Gen Murakami. Hippocampal Synthesis of Sex Steroids and Corticosteroids: Essential for Modulation of Synaptic Plasticity. Front Endocrinol [Lausanne]. 2011; 2: 43. doi:10.3389/fendo.2011.00043
  27. Zhao J, Bian C, Liu M, Zhao Y, Sun T, Xing F, Zhang J. J. Orchiectomy and letrozole differentially regulate synaptic plasticity and spatial memory in a manner that is mediated by SRC-1 in the hippocampus of male mice. Steroid Biochem Mol Biol. 2018 Apr;178:354-368. doi: 10.1016/j.jsbmb.2018.02.007.